Problemas de Revisão

Cálculo da carga nuclear efectiva Zef1

$$Z_{ef} = Z - S$$

Em que: $\mathbf{Z} = \text{carga nuclear}$

S = efeito de blindagem

Regras de Slater para calcular S

- 1. Escrever a configuração electrónica, agrupando os elesctrões da seguinte forma: (1s)(2s2p)(3s3p)(3d)(4s4p)(4d)(4f)(5s5p)...
- 2. Os electrões em grupos à direita do grupo em que se encontra o electrão sobre o qual se exerce o efeito de blindagem que estamos a calcular não contribuem para esse efeito de blindagem.
- 3. Todos os electrões do grupo do electrão em causa contribuem com o valor 0,35. No caso de o electrão pertencer ao grupo (1s), o outro electrão contribui com 0,30.
- 4. Se o electrão em causa pretencer a um grupo (ns np), todos os electrões com número quântico principal n-1 contribuem com 0,85 e e todos os electrões com n-2 ou inferior contribuem com 1,00.
- 5. Se o electrão em causa pretencer a um grupo (nd) ou (nf), todos os electrões em grupos à esquerda contribuem com 1,00.

Regras de Clementi-Raimondi para calcular S.

 N_{nl} representa o nº de electrões que ocupam a orbital nl na configuração do átomo em causa O efeito de blindagem sofrido por um electrão N_{nl} numa orbital de números quânticos n e I é dado por:

$$S_{1s} = 0.3 (N_{1s}-1) + 0.0072 (N_{2s} + N_{2p}) + 0.0158 (N_{3s,p,d} + N_{4s,p})$$

$$S_{2s} = 1,7208 + 0,3601 (N_{2s}-1 + N_{2p}) + 0,2062 (N_{3s,p,d} + N_{4s,p})$$

$$S_{2p} = 2,5787 + 0,3326 (N_{2p}-1) - 0,0773 N_{3s} - 0,0161(N_{3p} + N_{4s}) - 0,0048 (N_{3d}) + 0,0085 N_{4p}$$

$$S_{3s} = 8,4927 + 0,2501 (N_{3s}-1+N_{3p}) + 0,0778 N_{4s} + 0,3382 N_{3d} + 0,1978 N_{4p}$$

$$S_{3p} = 9.3345 + 0.3803 (N_{3p}-1) + 0.0526 N_{4s} + 0.3289 N_{3d} + 0.1558 N_{4p}$$

$$S_{4s} = 15,505 + 0,0971 (N_{4s}-1) + 0,833 N_{3d} + 0,0687 N_{4p}$$

$$S_{3d} = 13,5894 + 0,2693 (N_{3d}-1) - 0,1065 N_{4p}$$

$$S_{4p} = 24,7782 + 0,2905 (N_{4p}-1)$$

¹ A. R. Dias, Teoria da Ligação Química, IST, 1994

Propriedades Periódicas e TRPECV

- **1.** Escreva a configuração electrónica dos elementos com números atómicos entre 22 (Ti) e 30 (Zn), explicando eventuais "anomalias".
- 2. Ordene as espécies em cada um dos grupos seguintes por ordem crescente de raio.

i) F, Cl, Br

ii) C, N, O

iii) Li+, Be²⁺, B³⁺

- 3. Considere os seguintes átomos e iões, F, F-, Ne, Na e Na+.
 - a) escreva a configuração electrónica de cada um deles;
 - b) ordene as espécies em cada um dos seguintes conjuntos por ordem crescente de raio:

 $\{Na, Na^{+}\}$ $\{F, F^{-}\}$ $\{F, Na\}$ $\{F^{-}, Na^{+}\}$

- **4.** Calcule a carga nuclear efectiva sobre um electrão 3d e um electrão 4s do Fe, usando as regras de Slater e/ou de Clementi-Raimondi. Escreva as configurações electrónicas do Fe e do Fe²⁺.
- **5.** Por que razão o ião titânio no estado de oxidação +3 e o potássio não têm a mesma configuração electrónica?
- **6.** Explique a variação dos valores da 1ª energia de ionização para os elementos do 2º período:

	Li	Be	В	С	N	0	F	Ne
EI ₁ /eV	5,4	9,3	8,3	11,3	14,5	13,6	17,4	21,6

7. Explique quantitativamente e em termos relativos os valores da 1ª energia de ionização e da electroafinidade apresentados na tabela seguinte:

	N	0	F
EI ₁ /eV	14,534	13,618	17,422
EA/eV	-0,6	1,462	3,399

8. Considere os seguintes valores de energias de ionização do sódio e do magnésio:

	EI₁/eV	El ₂ /eV	EI ₃ /eV
Na	5,1	47,3	
Mg	7,9	15,0	80,1

- a) Discuta os valores relativos (eV) das três primeiras energias de ionização do magnésio usando argumentos quantitativos.
- b) Compare as duas primeiras energias de ionização do sódio e do magnésio.
- **9.** Usando a Teoria da Repulsão dos Pares Electrónicos da Camada de Valência (TRPECV), preveja a geometria mais provável para as seguintes espécies:

a) CH_4 H_3O^+ $I_3^ BCI_3$ CIF_3 NH_3 b) CO_2 O_2 O_3 CO_3^{2-} SO_4^{2-} SF_4 c) H_2O_2 HC=CH CH_3CH_2OH HCOOH

10. O momento dipolar permanente da molécula de H₂O é 1,85 D enquanto o do F₂O é apenas 0,297 D, embora o ângulo de ligação nos dois compostos seja idêntico. Explique.

Teoria das Orbitais Moleculares

1. Construa o diagrama de Orbitais Moleculares (OM) que descreve a ligação química da molécula de O₂ e desenhe as orbitais atómicas e moleculares envolvidas na ligação. Explique a variação dos comprimentos da ligação O-O nas diferentes espécies indicadas na tabela seguinte.

Discuta o carácter magnético das várias espécies.

Indique quais as orbitais moleculares do O_2 que poderão estar envolvidas na ligação do O_2 a um metal de transição.

Prevê que a geometria da ligação M-O=O seja linear ou "dobrada"?

Fórmula molecular	Comprimento da ligação O-O (Å)	
O ₂	1.21	
[O ₂] ⁺	1.12	
$[O_2]^{-}$	1.28	
$[O_2]^{2-}$	1.49	

2. Usando a Teoria das Orbitais Moleculares, descreva a ligação química na molécula de N₂. Construa o diagrama de OM apropriado e desenhe as orbitais atómicas e moleculares.

Explique porque é que a adição de um electrão à molécula de N_2 enfraquece a ligação entre os respectivos átomos, mas acontece o mesmo se lhe for retirado um electrão. Como varia o comprimento da ligação N-N ao adicionar ou retirar um electrão à molécula de N_2 ?

Discuta o carácter magnético das várias espécies (N₂, N₂⁺ e N₂⁻).

Indique quais as orbitais moleculares do N_2 que poderão estar envolvidas na ligação do N_2 a um metal de transição.

Prevê que a geometria da ligação M-N≡N seja linear ou angular?